On Riesz-Caputo Formulation for Sequential Fractional Variational Principles

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Riesz-Caputo Formulation for Sequential Fractional Variational Principles

and Applied Analysis 3 The left Caputo fractional derivative is C aD f t 1 Γ n − α ∫ t a t − τ n−α−1 ( d dτ )n f τ dτ, 2.6 while the right Caputo fractional derivative is

متن کامل

Fractional variational problems with the Riesz-Caputo derivative

In this paper we investigate optimality conditions for fractional variational problems, with a Lagrangian depending on the Riesz-Caputo derivative. First we prove a generalized Euler-Lagrange equation for the case when the interval of integration of the functional is different from the interval of the fractional derivative. Next we consider integral dynamic constraints on the problem, for sever...

متن کامل

Numerical Methods for Sequential Fractional Differential Equations for Caputo Operator

To obtain the solution of nonlinear sequential fractional differential equations for Caputo operator two methods namely the Adomian decomposition method and DaftardarGejji and Jafari iterative method are applied in this paper. Finally some examples are presented to illustrate the efficiency of these methods. 2010 Mathematics Subject Classification: 65L05, 26A33

متن کامل

Existence of Minimizers for Fractional Variational Problems Containing Caputo Derivatives

We study dynamic minimization problems of the calculus of variations with Lagrangian functionals containing Riemann–Liouville fractional integrals, classical and Caputo fractional derivatives. Under assumptions of regularity, coercivity and convexity, we prove existence of solutions. AMS Subject Classifications: 26A33, 49J05.

متن کامل

Variational formulation and optimal control of fractional diffusion equations with Caputo derivatives

*Correspondence: [email protected] 1School of Mathematics and Physics, China University of Geosciences, Lumo 388, Wuhan, 430074, China Full list of author information is available at the end of the article Abstract In this paper we start by giving a new definition of weak Caputo derivative in the sense of distributions, and we give a variational formulation to a fractional diffusion equa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Abstract and Applied Analysis

سال: 2012

ISSN: 1085-3375,1687-0409

DOI: 10.1155/2012/890396